
Exploring Self-Embedded Knitting Programs with
Twine

Amy Zhu

amyzhu@cs.washington.edu
University of Washington

USA

Adriana Schulz

adriana@cs.washington.edu
University of Washington

USA

Zachary Tatlock

ztatlock@cs.washington.edu
University of Washington

USA

Abstract
We examine how we might explicitly embed the intricate de-

tails of the fabrication process in the design of an object; the

goal is for the programs that manufacture the object to also

produce themselves within the object. We highlight how con-

cretizing the design process of an object in the real object can

help reconstruct items and remind us of the reality that all

objects must be manufactured, incurring labour and environ-

mental costs. By drawing inspiration from self-reproducing

programs, we outline a new self-decoding language design

centred around quines for knitting, a versatile technique in

fabric construction, with both historical significance and re-

cent advances in programmable whole-garment machines

for their manufacture. We show some preliminary results

of using this language design to create knitted quines, and

discuss how this interesting question might be further ad-

vanced.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Applied computing;

Keywords: knitting, fabrication, embedded information, quines

ACM Reference Format:
Amy Zhu, Adriana Schulz, and Zachary Tatlock. 2023. Exploring

Self-Embedded Knitting Programs with Twine. In Proceedings of
the 11th ACM SIGPLAN International Workshop on Functional Art,
Music, Modelling, and Design (FARM ’23), September 8, 2023, Seattle,
WA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3609023.3609805

To err is human, to recreate, quine.

1 Introduction
Every fabricated object implicitly contains aspects of its fab-

rication program. Remnants of manufacturing processes are

embedded in weave patterns, seams, joins, cut ends, and

other artifacts. When experts in design and manufacturing

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

FARM ’23, September 8, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0295-2/23/09.

https://doi.org/10.1145/3609023.3609805

analyze a manufactured object, they can often deduce many

of these aspects, from the materials used, the manufacturing

processes employed, and the assembly methods involved.

However, this analysis requires substantial expertise and

potentially dismantling the object to reverse engineer it and

develop a manufacturing plan for replication. Moreover, a

comprehensive understanding of the manufacturing process

is often not possible because there can be multiple ways to

produce a given design. Hence, we pose the question: can

we leverage concepts from self-reproducing programs to

generate designs encoding their manufacturing process?

Explicitly encoding the manufacturing process also reifies

the making of objects. It calls attention to the production

of the things we consume, providing quotidian reminders

that these items did not spontaneously appear, but had to be

created: the materials grown or synthesized, the processes

engineered, the items crafted and transported. In our fast-

paced consumerist society, we often disregard the origins

of our purchases. By showcasing manufacturability within

the objects themselves, we compel people to confront these

considerations, suggesting a mindful approach towards con-

sumption, prompting reflection on the labor and environ-

mental implications associated with our things.

In this work, we identify an interesting challenge in em-

bedding fabrication programs explicitly within knitted items,

and provide preliminary steps in exploring the space of solu-

tions alongside a short evaluation of the progress we have

made thus far.

Our proposed question is rooted in the fundamental un-

derstanding that manufacturing plans can be viewed as pro-

grams. These programs consist of sequences of instructions

that unveil the process of object creation. We deliberately

selected knitting as the primary subject of our investigation,

given its historical significance and its status as one of the

earliest and most adaptable techniques for fabric construc-

tion. Moreover, the advent of programmable whole-garment

knitting machines has facilitated the exploration of knitting

from a programming language analysis standpoint, resulting

in numerous studies within this field of research.

Furthermore, we insist that the fabrication instructions

incorporate the means to replicate themselves, such that the

new object derived from these instructions also contains the

necessary fabrication instructions. From this perspective, a

manufacturing process that exposes itself within the gen-

erated object is like a program that produces a replica of

https://orcid.org/0000-0001-5766-7090
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3609023.3609805
https://doi.org/10.1145/3609023.3609805
https://doi.org/10.1145/3609023.3609805

FARM ’23, September 8, 2023, Seattle, WA, USA Zhu et al.

its own source code. This problem statement may recall a

classic programming problem: that of writing a quine.

Interesting quines already present a challenge to write

in general-purpose programming languages with general-

purpose tools. Instead, we posit that for the purpose of

producing specific quines easily and extensibly, this “self-

printing information” must be embedded into the semantics

of the language itself.

Our insights are twofold. First, we view the process of

including the fabrication instructions for an object as embed-
ding the fabrication program within the fabrication program,

rather than including them as a layer on top or another

processing step, enabling the worldview that these can be

expressed as quines. Second, to enable the creation of many

different knit quine programs, we should build a language

that has self-production as a first-class citizen. We design

such a language, called Twine, and use it to write and cre-

ate some knitted quines. We identify key challenges within

this problem space and describe what future work would be

necessary to fully do justice to this interesting problem.

Our contributions serve as a prototype that begins to ex-

plore the problem space, not the final word on this subject.

Rather than thinking of this work as solving the problem

of self-embedded fabrication programs, we hope this paper

opens avenues to more interesting and complete insights

and implementations to come.

2 Related work
2.1 Fabricating embedded information
There has been a rich interest in fabricating items with em-

bedded information, of which we provide a very brief as-

sessment. Some lines of work find ways to either invisibly

encode directions to external information on objects such as

3D-printed QR codes only visible to an IR camera [3], visibly

render barcodes for 3D printing [8], or explore how to embed

designs into 3D printed objects revealed through IR imaging

or thermal conductivity [6]. Other, more subtle ways to em-

bed information can also be powerful. [2] demonstrates the

use of settings as “signatures” by changing slicing parame-

ters to identify the manufacturing printer. [1] shows another

watermarking mechanism through slight variations in layer

thickness. We refer readers interested in a more in-depth

exploration of the space to the papers cited above.

Perhaps most relevantly, [7] demonstrates how a DNA-

inspired matrix of nano glass beads can be used as a material

for 3D printing. The authors show how a 3D-printed Stanford

bunny can be disassembled, sequenced, and used to replicate

itself, doing this five times in total.

These works often aim to embed arbitrary information,

which may be far larger than the object itself, or redirect

the user to another resource. In our work, we aim to embed

only the program producing the fabrication object directly

(a) (b)

Figure 1. An illustration of knits. (A) A row of unsupported

loops. These loops would be considered neighbors. (B) A

wale of loops, showing the stability of loops pulled through

loops. Notice how the legs of the yarn in the middle loop can

no longer be pulled flat.

into the object. Importantly, we do this within the domain

of knitting.

2.2 Knitting languages
Computational knitting is a rich field with advances from

graphics, HCI, and programming languages. There are sev-

eral notable examples of domain-specific languages devel-

oped to describe knitting. KnitSpeak [5] is a language to

describe knitting patterns, particularly textures, which draws

inspiration fromhowknitters typicallywrite patterns. Knitout,

first described in [9], is an abstract assembly language that

encodes knitting machine operations.

3 Knitting background
Knitted fabric is composed, fundamentally, by loops on a

connected yarn. A loop on its own is not stable, but the

process of knitting pulls a loop through another loop, thus

stabilizing it (Figure 1). We describe such a relationship as

parentage: the old loop that was pulled through is the parent

of the new loop. Following the link from parent to child along

the knit object produces wales. Loops that are neighbors, i.e.
next to each other on the yarn, are typically part of the same

course (unless they are also parent and child).

The process of generating knitted items is regular, with

instructions for what operations to perform and which loops

to perform them on, similar to an assembly language.

4 Desiderata and Definitions
The design space of such self-decoding languages is vast, and

one could imagine many different solutions with different

properties. With an eye towards designing languages usable

for adoption in all knitted objects, we have identified several

properties as desiderata, some in tension with one another:

1. Compression. The act of reconstructing the program
should be less tedious than transcribing every individ-

ual stitch.

Exploring Self-Embedded Knitting Programs with Twine FARM ’23, September 8, 2023, Seattle, WA, USA

2. Robustness. Imagine that some part of the fabric is

destroyed. Will we still be able to recover the instruc-

tions? How many instructions will be affected? For

example, extremely compressed programs might make

losing a piece of the knit object catastrophic.

3. Locality.An instruction should somehow be displayed

and recoverable close to the piece of the object it cre-

ates. If we are decoding a sweater with its embedded

fabrication instructions, having the sleeve contain all

of its fabrication instructions and the body contain

its fabrication instructions makes tasks like editing

or remixing patterns more straightforward. We also

believe there is some amount of elegance in the idea

that an instruction can be encoded in the result of its

instruction.

4. Decodability. The language should offer a way to

decode a pattern from a physical object that is easier

and clearer than reconstructing the program through

expert knowledge. For example, identifying where a

pattern begins when it has been knit in-the-round can

be done by close examination and the information that

knitting is helical, but this is a tedious and uncertain

process. The language should avoid being abstruse,

so that checking that a decoding matches a specific

object is possible, and potentially even enable the error-

correction of any “flipped bits”.

5. Expressiveness. The fact that the object must be a

quine should not restrict the space of things we are

able to knit, and users should be allowed freedom in

making a wide array of design choices.

Very importantly, all quined knitting programs, using the

following definitions,

(Encode) J K : Prog→ Fabric

(Decode) L M : Fabric→ Prog

must fulfill this property:

∀𝑝 ∈ Prog.𝑝 = LJ𝑝KM

which says that all programs encoded in the fabric can be

decoded from the fabric into the same program.

5 A Prototype
We propose a prototype language, Twine, that makes it sim-

ple to design knitted quines. In Twine, the progam is en-

coded within the fabric, and can be decoded from the fabric.

A Twine program is then interpreted, where the interpreter

represents the process of compiling the program to knitting

instructions and knitting it. The program is then re-extracted

from the knitted item by observing its colour pattern, which

can then be re-interpreted to produce another knitted item.

We choose to use colours as the front-end for the language,

reasoning that it is relatively easy to distinguish them. Each

stitch has a colour; for example, a red stitch represents one

instruction. To bootstrap the program, a user can begin from

any valid knitted object, and generate a quine from it by

assigning the correct colours to each stitch, preserving its

initial validity.

One idea we originally had for creating self-replicating

knits is to try and embed the proprietary low-level visual pro-

gramming language from Shima Seiki, Knit Paint, as colour-

work onto a knit object such that the Knit Paint program,

when executed, fabricated that object. However, there is an

difficulty in that in Knit Paint programs, changing colours

means adding a new row to the program, thus expanding

the program beyond any hope of making it self-contained.

Instead, we decided that these colours shhould be parsed and

translated into a quine-embedding language, which is then

compiled into knitting instructions.

One language design idea could be, then, for each colour

to describe its own method of manufacture: e.g. a red stitch

might mean “purl with red”, and a blue stitch might mean

“knit with blue”. However, because counting each individ-

ual stitch is cumbersome, we choose to incorporate a more

idiomatic “repeat” strategy instead, which describes how

many times to repeat a stitch. Each course begins with the

specification for how to knit all the stitches in that course,

at which point the next course begins and new colour in-

structions are rendered. When reading the program from the

fabric, the end of each course is additionally signalled by a

“switch direction” instruction, which hints to the user to start

reading in the other direction in the course below. Currently,

our program only supports repeating simple knit stitches,

but in the future it will be important to support arbitrary

repeating patterns of stitches and a variety of operations.

We present the syntax of the Twine frontend in Figure 3,

translation from frontend to Twine IR in Figure 5, syntax of

Twine IR in Figure 4, and semantics of Twine IR in Figure 6.

The target language of the Twine compiler is Knitout [9],

which is an abstract assembly language over knitting ma-

chines. Each knitout statement is a command for the knitting

machine to perform a single meaningful operation, such as

knit, drop from needle, transfer from one bed to another at

certain needle, or move a yarn carrier to a specific location.

Here, we focus on the “knit” command, knit(dir, needle,
yarn), which takes a knitting direction, needle, and yarn

as parameters, and makes one loop at that needle in that

direction.

5.1 Discussion
Our language makes the following trade-offs in the desider-

ata landscape, as described in section 4. It is very local, dis-

tributing the fabrication instructions throughout the object,

and keeping each course’s fabrication instructions indepen-

dent from the next, at the expense of further compression. A

more compressed representation could, for example, specify

when whole courses are repeated. We believe our design also

strikes reasonable levels of robustness and expressiveness.

FARM ’23, September 8, 2023, Seattle, WA, USA Zhu et al.

With instructions at only the beginning of each course, we

are able to knit a large variety of shapes, though some design

choices are constrained by the row-to-row decoding. On the

other hand, a densely-encoded area that contains e.g. the

whole item’s worth of instructions in the beginning of the

knit means the reconstruction fails catastrophically if that

area is ruined; of course, such an encoding could allow even

more design freedom in the rest of the garment. With respect

to decodability, we chose colours as obvious and striking

features that are easy to read, and each stitch as a unit of

colour demarcates each instruction simply. However, the

reader still needs to be able to distinguish individual stitches

and their courses.

Set knitting direction to be left to right
Knit a stitch with pink

Register digit 1 into list of digits
Knit a stitch with dark blue

Register digit 3 into list of digits
Knit a stitch with cyan

Register digit 2 into list of digits
Knit a stitch with light blue

Knit a stitch with red
Make (digits) number of the
knit instructions

Nop - No e�ect

N.B. Putting fewer NOPs in the program
than speci�ed by the colour instructions
makes the quine invalid

Knit with green,
then change knitting direction
to be right to left

Register digit 1 into list of digits
Knit a stitch with dark blue

Register digit 3 into list of digits
Knit a stitch with cyan

Knit a stitch with red
Make (digits) number of the

knit instructions

Figure 2. A visual decoding of a knit quine in the Twine

frontend.

Program ::= Instr*
Instr ::= SetDirL2RKnit

| SwitchDir
| Base4Num0
| Base4Num1
| Base4Num2
| Base4Num3
| Repeat
| Nop

Figure 3. Syntax of Twine frontend.

We believe that it should be possible to generate quines for

knitting programs that use knits, purls, and short rows. Note

that each such knitting program has only one Twine program

that represents it, and each Twine program represents a

unique knitted item, removing all ambiguity for decodability

purposes. Each knitted item has a distinctive look imparted

by the Twine self-decoding system.

IR ::= Op*
Op ::= l \leftarrow v

| knit(Colour, \mathbb{N})
l ::= dir | digits
v ::= + | - | dir | -v

| 0 | 1 | 2 | 3 | empty
Colour ::= 1 | 2 | 3 | 4 | 5

| 6 | 7 | 8 | 9 | 10

Figure 4. Syntax of Twine IR.

lower : prog → IR

lower = flatmap lowerInstr

lowerInstr : Instr → IR

lowerInstr(SetDirL2RKnit) =

dir ← +; knit(1, 1)

lowerInstr(SwitchDir) =

dir ← - dir; knit(2, 1)

lowerInstr(Base4Num0) =

digits ← 0; knit(3, 1)

lowerInstr(Base4Num1) =

digits ← 1; knit(4, 1)

lowerInstr(Base4Num2) =

digits ← 2; knit(5, 1)

lowerInstr(Base4Num3) =

digits ← 3; knit(6, 1)

lowerInstr(ExecuteRepeat) =

knit(7, 1); knit(8, to_int(digits));

digits ← empty

lowerInstr(Nop) = ;

Figure 5. Lowering step from Twine frontend to Twine IR.

We considered supporting increases and decreases, but en-

countered increased constraints. Users should not be asked

to to read colours off stacked stitches, as the stitch colour and

order are obscured, complicating the process of reconstruct-

ing the program. We could also constrain the instructions

to only knit stitches, which could be future work, but this

accommodation makes feasible knits difficult to characterize.

Further work is needed to expand the quine language and

space of knitted quines, possibly using another encoding.

6 Compiler pipeline
Wehave implemented a Twine language interpreter in Python.

Users can construct Twine programs (as one flat array of

colours) and interpret them to get a list of knitting instruc-

tions.

As metadata, we insert two rows of each colour at the

beginning of each knit piece. These should not be included

Exploring Self-Embedded Knitting Programs with Twine FARM ’23, September 8, 2023, Seattle, WA, USA

SetDirLeft

𝜎 ′ = 𝜎 [𝑑𝑖𝑟 ↦→ −]
⟨𝑑𝑖𝑟 ← + :: 𝑃, 𝜎, 𝐹 ⟩ −→ ⟨𝑃, 𝜎 ′, 𝐹 ⟩

SwitchDirLeft

𝜎 (𝑑𝑖𝑟) = − 𝜎 ′ = 𝜎 [𝑑𝑖𝑟 ↦→ +]
⟨(𝑑𝑖𝑟 ← −𝑑𝑖𝑟) :: 𝑃, 𝜎, 𝐹 ⟩ −→ ⟨𝑃, 𝜎 ′, 𝐹 ⟩

SwitchDirRight

𝜎 (𝑑𝑖𝑟) = + 𝜎 ′ = 𝜎 [𝑑𝑖𝑟 ↦→ −]
⟨(𝑑𝑖𝑟 ← −𝑑𝑖𝑟) :: 𝑃, 𝜎, 𝐹 ⟩ −→ ⟨𝑃, 𝜎 ′, 𝐹 ⟩

Knit

𝑑 = 𝜎 (𝑑𝑖𝑟) 𝑛 = 𝜎 (𝑛𝑒𝑒𝑑𝑙𝑒)
𝐹 ′ = 𝐹 :: 𝑘𝑛𝑖𝑡𝑘𝑜 (𝑛,𝑑, 𝑐) 𝜎 ′ = 𝜎 [𝑛𝑒𝑒𝑑𝑙𝑒 ↦→ 𝑑 (𝑛, 1)]

⟨𝑘𝑛𝑖𝑡 (𝑐, 0) :: 𝑃, 𝜎, 𝐹 ⟩ −→ ⟨𝑃, 𝜎, 𝐹 ′⟩

KnitMultiple

𝐹 ′ = 𝐹 :: 𝑘𝑛𝑖𝑡𝑘𝑜 (𝑛,𝑑, 𝑐)
𝑛 = 𝜎 (𝑛𝑒𝑒𝑑𝑙𝑒) 𝜎 ′ = 𝜎 [𝑛𝑒𝑒𝑑𝑙𝑒 ↦→ 𝑑 (𝑛, 1)

𝑟 ′ = 𝑟 − 1 𝑃 ′ = 𝑘𝑛𝑖𝑡 (𝑐, 𝑟 ′) :: 𝑃
⟨𝑘𝑛𝑖𝑡 (𝑐, 𝑟) :: 𝑃, 𝜎, 𝐹 ⟩ −→ ⟨𝑃 ′, 𝜎, 𝐹 ′⟩

Figure 6. Twine semantics. Here, 𝑃 is the Twine program

being executed, 𝜎 is the environment wherein our machine

state is held, and 𝐹 is the fabric being produced (i.e. the

Knitout knitting program. 𝑘𝑛𝑖𝑡𝑘𝑜 represents the Knitout in-

struction knit being emitted rather than the Twine IR ter-

minal.

to_int(digits) =
digits.reduce(
lambda acc, digit, idx:
acc + (digit *
pow(4, len(digits) - 1 - idx)),

0)

Figure 7. Helper function for Twine semantics, which con-

verts a list of base four digits into a (base 10) integer.

in the program reconstruction, and they help users identify

which colour represents which command and to mitigate

potential fabrication pitfalls.

We compile to doubleknit jacquard, which we have empir-

ically found to have several advantages. Doubleknit jacquard

makes it possible to easily and stably fabricate colourwork

changes like the ones we present here, and also enables the

possibility to have the quine be on the backside of a knitted

item (as both sides may have different colour patterns). Items

knit with this colourwork style are also naturally quite flat.

in the reverse (have the instructions on the inside), naturally

flat. This choice unfortunately does lead to the produced

knitted items sometimes having different properties from

their non-jacquard counterparts, as seen in section 7.

Items were then compiled to the Knitout assembly lan-

guage as described in [9], then KnitPaint’s .dat format, then

to Shima Seiki’s .000 machine code, and finally knit on a

7-gauge Shima Seiki SWG091N2.

7 Evaluation
As a first illustration, we created a sample knitted square

(Figure 8) through the quine language. The square is 35

stitches wide and starts at the top left, where the small yellow

stitch, SetDirL2RKnit, sets the knitting direction. Note that
to reconstruct the program, the knitting direction is also the

reading direction, which is necessary to ensure the quine

behaviour of the program. The first few stitches after (val-

ues Base4Num1, Base4Num3, Base4Num2) then define how

many stitches to knit when ExecuteRepeat is encountered

(30). The orange stitch denotes ExecuteRepeat and the blue
stitches are Nop. Then, at the right side of that course, bright
red (KnitSwitchDir) knits and sets the machine direction

to right-to-left. We continue to read right-to-left now, start-

ing from directly below the bright red stitch. This square

example demonstrates how Twine works for a very simple

shape and accordingly simple program.

Figure 8. The final knitted square. The first rows are the

metadata stripes, setting the order of the colours used. To

illustrate, because yellow is first, we see that it is the first

instruction in the Twine frontend, SetDirL2RKnit and be-

cause blue is last, we see that it is the last instruction, Nop.
After the 8 bands of colour, the first yellow stitch on the left

is SetDirL2RKnit instruction.

Second, we wanted to demonstrate our language embed-

ded in a functional object. As our tool supports short-row

shaping, we adapted a pattern for a short-row hat [4] into

our quine language format. The hat pattern was generated

using the pseudocode in Figure 10, then translated into our

FARM ’23, September 8, 2023, Seattle, WA, USA Zhu et al.

Figure 9. The Twine pattern for the square in Figure 8, as

explained in Figure 2.

cast on 76
for repeat in 0..5 {

for (let i = 72; i >= 40; i -= 1) {
knit from 0 to i
knit from i to 0

endfor
endfor

Figure 10. The basic knitting instructions for the short-row

hat.

quine language. Unfortunately, we found that here dou-

bleknit jacquard caused the fabric to become too thick to

properly shape into a hat as the original pattern intended, as

in Figure 11. We were also forced to shrink the hat pattern

by over half, as the knitting pattern generated from the orig-

inal pattern in Figure 10 proved too large for the knitting

machine memory.

8 Limitations, Discussion, and Future Work
In this work, we present a study of what self-embedded fab-

rication programs for knitting might look like. Truly under-

standing the scope of the problem domain, and discovering

a fully comprehensive solution would require overcoming

some key challenges we have identified.

First, the space of all knit programs expressible and the

space of all knit quines, and their relationship, still wants for

a formal treatment. We would like to be able to understand

what kinds of knit programs cannot be transformed into self-

embedded quines, and what strategies could be employed to

make it possible. Currently, Twine uses only the colour chan-

nel of knit objects to convey information, leaving the texture

channel and shaping channel freely manipulable. Could we

Figure 11. A shapely version of the knitted hat, formed into

a cone.

achieve richer information by incorporating semantic tex-

ture changes as well? Or perhaps in some cases it would be

more visually appealing to reserve the colour channel and

embed the information elsewhere.

Figure 12. On the right in blue are several versions of the

knitted hat, where we had modified the pattern in an attempt

to make the final product more hat-like. On the left in yellow

is the expected full-size hat oracle. Note that the blue patterns

typically have much less curvature from shaping.

The colourwork method of doubleknit jacquard has many

benefits as described in section 6; however, its use resulted

in undesirable metric changes in our evaluation, due to the

thickness of the fabric.We found that patterns often had to be

drastically re-developed from the original design. Figure 12

shows the process of finding a reasonably suitable set of

parameters for a smaller hat pattern. Being able to update

these patterns parameters with informed guidance, or being

able to ensure the validity of a quine translation, could be

one solution to this problem.

Alternatively, we could find a new colourwork method to

stably produce individual stitches of colour across the knit

object without greatly affecting the overall knit properties,

which would facilitate wide applicability. One example could

Exploring Self-Embedded Knitting Programs with Twine FARM ’23, September 8, 2023, Seattle, WA, USA

be duplicate stitch — stitching over the existing loop with a

new colour — but this is not scalable.

Also, as discussed in section 5, Twine does not yet support

any operations beyond short rows. Further work is needed

to support increases and decreases, after which a more thor-

ough evaluation will be needed. Another target would be

supporting stitch patterns of varying lengths with different

stitch types. For example, if a user wanted to write a rib

pattern, they would want to specify that the pattern (knit,

purl) is repeated however many times.

Related to both of the latter challenges, another boon

would be using some type of simulation or rigorous exper-

iments to understand the effect that certain stitch types or

colourwork strategies have on the overall visual saliency of

knit stitch colours. For example, this data could be used to

predict whether or not a three-stitch decrease can be reason-

ably decoded. Such feedback would be useful for tightening

the iteration loop for both the language design and pattern

design (such as in the hat case described above).

Finally, program decoding is currently reliant on human

extraction of the program from knit objects. Though we be-

lieve this to be acceptable, and possibly the most accurate

method at the moment, any of widespread adoption, more

subtle encoding types, or very tedious encodings would ne-

cessitate some kind of machine-extractable system.

9 Conclusion
We suggest a language inspired by programming quines,

Twine, for knitting programs that enables embedding the

fabrication instructions within the fabrication instructions,

thereby encoding them in the final knitted object. Our insight

for making this possible is that the language itself should

feature self-embedding as a first class citizen, which we im-

plement. We identify several key desiderata that any such

language should be evaluated against. Our work is a first

step towards fully enabling embedded fabrication programs

within knitted objects, which is itself a first step towards the

idea that all objects will contain their fabrication instructions,

and that they might do so within the fabrication program

itself. One day, we may be able to recreate arbitrary objects-

in-the-wild, and that each will be a reminder to us of the

physical making of these objects.

Acknowledgments
We would like to thank Chandrakana Nandi for help iter-

ating on the deign of Twine, Anjali Pal and James Yoo for

critique on early and late drafts, and other members of the

UW PLSE and GRAIL labs for in-depth discussions. We are

very appreciative of the thoughtful, thorough, and insightful

feedback from the anonymous reviewers. Finally, we would

like to thank John Leo for his enthusiastic encouragement.

This work was funded by NSF 2017927.

References
[1] Arnaud Delmotte, Kenichiro Tanaka, Hiroyuki Kubo, Takuya Funatomi,

and Yasuhiro Mukaigawa. 2020. Blind Watermarking for 3-D Printed

Objects by Locally Modifying Layer Thickness. IEEE Transactions on
Multimedia 22, 11 (2020), 2780–2791. https://doi.org/10.1109/TMM.
2019.2962306

[2] Mustafa Doga Dogan, Faraz Faruqi, Andrew Day Churchill, Kenneth

Friedman, Leon Cheng, Sriram Subramanian, and Stefanie Mueller. 2020.

G-ID: Identifying 3D Prints Using Slicing Parameters. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,

New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376202
[3] Mustafa Doga Dogan, Ahmad Taka, Michael Lu, Yunyi Zhu, Akshat Ku-

mar, Aakar Gupta, and Stefanie Mueller. 2022. InfraredTags: Embedding

Invisible AR Markers and Barcodes Using Low-Cost, Infrared-Based 3D

Printing and Imaging Tools. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI
’22). Association for Computing Machinery, New York, NY, USA, Article

269, 12 pages. https://doi.org/10.1145/3491102.3501951
[4] Brooke T Higgins. 2005. Tychus. https://knitty.com/ISSUEsummer05/

PATTtychus.html
[5] Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins,

Scott E. Hudson, James McCann, and Jennifer Mankoff. 2019. KnitPick-

ing Textures: Programming and Modifying Complex Knitted Textures

for Machine and Hand Knitting. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (New Orleans,

LA, USA) (UIST ’19). Association for Computing Machinery, New York,

NY, USA, 5–16. https://doi.org/10.1145/3332165.3347886
[6] Weiwei Jiang, Chaofan Wang, Zhanna Sarsenbayeva, Andrew Irlitti,

Jarrod Knibbe, Tilman Dingler, Jorge Gonçalves, and Vassilis Kostakos.

2021. InfoPrint: Embedding Information into 3D Printed Objects. ArXiv
abs/2112.00189 (2021).

[7] Julian Koch, Silvan Gantenbein, Kunal Masania, Wendelin J. Stark, Yaniv

Erlich, and Robert N. Grass. 2020. A DNA-of-things storage architecture

to create materials with embedded memory. Nature Biotechnology 38, 1

(01 Jan 2020), 39–43. https://doi.org/10.1038/s41587-019-0356-z
[8] Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng.

2019. LayerCode: Optical Barcodes for 3D Printed Shapes. ACM Trans.
Graph. 38, 4, Article 112 (jul 2019), 14 pages. https://doi.org/10.1145/
3306346.3322960

[9] James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech

Matusik, Jennifer Mankoff, and Jessica Hodgins. 2016. A Compiler for

3D Machine Knitting. ACM Trans. Graph. 35, 4, Article 49 (jul 2016),
11 pages. https://doi.org/10.1145/2897824.2925940

Received 2023-06-01; accepted 2023-07-01

https://doi.org/10.1109/TMM.2019.2962306
https://doi.org/10.1109/TMM.2019.2962306
https://doi.org/10.1145/3313831.3376202
https://doi.org/10.1145/3491102.3501951
https://knitty.com/ISSUEsummer05/PATTtychus.html
https://knitty.com/ISSUEsummer05/PATTtychus.html
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1038/s41587-019-0356-z
https://doi.org/10.1145/3306346.3322960
https://doi.org/10.1145/3306346.3322960
https://doi.org/10.1145/2897824.2925940

	Abstract
	1 Introduction
	2 Related work
	2.1 Fabricating embedded information
	2.2 Knitting languages

	3 Knitting background
	4 Desiderata and Definitions
	5 A Prototype
	5.1 Discussion

	6 Compiler pipeline
	7 Evaluation
	8 Limitations, Discussion, and Future Work
	9 Conclusion
	Acknowledgments
	References

